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Abstract. The effects of Coulomb interaction on charge transport in a model of light emission from an
array of silicon nanoclusters are studied by Monte Carlo simulations. The array is sandwiched between
a p-type and an n-type doped silicon crystals and electrons and holes are driven into the array by an
applied electric field. Radiative recombinations of electrons and holes take place near the center of the
array producing the emission of red light, and the total emission power is approximately proportional to
the current injected into the system. It is found that the carrier-carrier interaction plays a crucial role
in charge transport. Specifically, the self-interaction of charges inside each nanocluster is found to be the
dominant interaction term for the semiclassical Hamiltonian considered. In addition, it drastically limits
the current in the device giving rise to a strong non-linear relation between current and density of free
carriers in the doped silicon crystals.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.60.-k Transport processes – 73.63.-b Electronic transport in nanoscale materials and structures

1 Introduction

An open problem in optoelectronic systems is to efficiently
produce light from the injection of charges into a sili-
con based device (see, e.g. [1–8]). Recently, a prototype
of a silicon nanocluster (NC) array has been introduced
and studied theoretically [9]. The model consists of an
assembly of silicon nanoclusters sandwiched between p-
and n-type doped silicon crystals, which act as charge
reservoirs of holes and electrons, respectively. The carri-
ers are driven into the array by an applied electric field,
producing red light when radiative recombinations take
place. It is found that the efficiency for light emission is
quite large, between about 2% and 0.5% for fields ranging
from 100 to 500 kV/cm, respectively, at the temperature
T = 300 K [9]. The light emission takes place near the
center of the array, where nanoclusters having a diameter
of about 3.6 nm are located, and the total emission power
is approximately proportional to the total current injected
into the system.

Due to the small size of the nanoclusters two dis-
tinct effects appear. One of them is quantum-confinement,
which allows for visible light emission with rather large
yield. For example, a silicon nanocluster of 3.6 nm diame-
ter has a yield of about 1/3 (i.e., on average, one photon is
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produced for every three electron-hole recombinations [6])
and light emission occurs predominantly in the visible red.
A second phenomenon is the presence of the Coulomb self-
interaction between the additional charges brought inside
a nanocluster. This interaction is not acting in ordinary
crystal semiconductors because charge confinement does
not take place in the bulk. Thus, one must necessarily
deal with the Coulomb interaction in the study of charge
transport in nanoclusters arrays.

The main purpose of the present work is to estimate,
from a semi-classical point of view, the main effects of the
Coulomb interaction on charge transport and total light
emission power for the array of nanoclusters introduced
in [9]. The present calculations are aimed to extend and
complement the results discussed in [9], permitting us to
draw more general conclusions on the role of Coulomb
interactions in such silicon nanocluster arrays.

The paper is organized as follows. In Section 2 the
model is briefly reviewed together with a discussion of the
different approximations performed. The charge carriers
dynamics is simulated by means of the Metropolis-Monte
Carlo method, whose rules are summarized in Section 3.
The numerical results are discussed in Section 4, where
a simple analytical model is presented in the case of non
interacting carriers. A summary and concluding remarks
are given in Section 5.



208 The European Physical Journal B

2 Silicon nanocluster array

Realistic models of nanoclusters devices necessarily con-
sist of several thousands of atomic or molecular units (see
e.g. Fig. 1), for which first principles calculations of trans-
port properties remain elusive. The less ambitious goal
of using parametrized tight-binding Hamiltonians still re-
mains prohibited. A promising approach to attack the
transport problem of a many-nanocluster system is to re-
sort to a semiclassical Hamiltonian (see Sect. 3) which
can be solved in a very efficient fashion by Monte Carlo
methods.

The spatial disposition of nanoclusters illustrated in
the top panel of Figure 1 suggests us to consider the
idealized one-dimensional array of nanoclusters shown in
the lower panel of Figure 1, which is expected to capture
the essential geometrical and carrier-carrier interaction as-
pects [9]. The electronic properties of the Si nanoclusters
used in our calculations are summarized in Appendix A,
where the relation between optical gap E and radius R of
each nanocluster is given (see Eq. (6) below). The (indi-
rect) optical gaps in the doped silicon crystals (boxes in
Fig. 1) take their bulk value EBulk = 1.17 eV.

In what follows, the index 1 ≤ i ≤ N indicates the ith
NC, where Ri and Ei are its radius and optical gap, re-
spectively (see Eq. (6)). Here, we have taken N = 400,
E1,N = 1.25 eV (i.e. R1,400 = 80 Å) and the central
NC at i = 200 and 201 have E200,201 = 1.8 eV (i.e.
R200,201 = 18 Å), while the energy gaps decrease linearly
and symmetrically from the outermost NCs to the cen-
ter. The values i = 0 and N + 1 denote the p- and n-
type materials, represented by the left and right boxes in
Figure 1, respectively, where E0,N+1 = EBulk. For conve-
nience, we associate a size d0 = dN+1 = 200 Å to those
materials. The position of the ith NC in the system is
xi =

∑i−1
j=1 2Rj + Ri, for 2 ≤ i ≤ N , with x1 = R1,

and the total length of the NC array, LNC = 2
∑N

i=1 Ri,
becomes LNC ≈ 2.61 µm. We proceed by discussing the
model Hamiltonian and the Monte Carlo rules.

3 Coulomb interaction and Monte Carlo
simulation rules

In the model, hopping of carriers occurs between nearest-
neighbor NCs, or between a box and its neighboring NC,
and the corresponding hopping time is denoted as τhop.
This hopping time actually describes a tunneling process
across energy barriers separating nearby clusters. In order
to take into account the effects of passivation present on
our NCs (see e.g. [6]), we assume that hopping in our array
is hindered with respect to that in porous-Si and use here
a value of τhop which is 100 times larger than the one used
for modelling carrier hopping in p-Si (cf. [10]). Thus, we
take τhop = 5 × 10−3 s.

Electrons and holes, which are free to move in the
doped materials, are pushed into the system (Fig. 1)
by the applied electric field, �F , whose intensity is
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Fig. 1. Top panel: Illustration of an array of Si nanoclus-
ters (open disks) of varying size (larger near the borders and
smaller at the center of the array) sandwiched between p- and
n-type doped silicon crystals (boxes), denoted by P and N.
Lower panel: Schematic representation of the one-dimensional
prototype model studied in this work. The energy levels (or
optical gaps) of the neutral nanoclusters, in the absence of an
external field, are illustrated at the bottom of the figure. In
the stationary state, most of the photons (of ≈ 1.8 eV) will
be emitted from the center of the system. The Fermi energy of
the array, εF, is indicated by the horizontal dotted line. The
uppermost arrow indicates the direction of the applied electric
field, �F , pointing in the forward bias direction to bring elec-
trons e (small filled circle) and holes h (small open circle) from
the borders to the center of the system. The additional dotted
lines are drawn to guide the eye.

F = U/LNC, where U is the voltage drop and LNC the
total length of the array. In addition to the external field,
the charge carriers react to the internal electric fields pro-
duced by the distribution of carriers inside the array. In
order to move towards the center, electrons and holes have
to overcome local energy barriers represented by the dif-
ferent energy gaps between neighboring NCs, undergoing
thermally activated processes. It is further assumed that
the external electric field does not modify the electronic
structure of the NC.

To treat the carrier-carrier interactions consistently,
the dielectric properties of the array must be considered.
In order to simplify our approach, we take an effective
dielectric constant εeff which is independent of position
in the system (see e.g. [11,12]). Thus, the effective direct
Coulomb interaction between the net charges qi at xi and
qj at xj is given by

Vi,j =
qiqj

εeff |xi − xj | , for i �= j , (1)

where qi = e(nh(i)−ne(i)), and nh(i), ne(i) are the occu-
pation numbers of h and e at the ith NC (1 ≤ i ≤ N), and
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e > 0 is the unit electric charge. Due to charge neutrality,
the net charges inside the doped materials are zero. Inside
a single NC, the self-interaction of charges is estimated as
(see also [11])

Vi,i =
q2
i

εeffRi
. (2)

Additional contributions due to exchange-correlation ef-
fects are not explicitly included in the model. They could
be considered within a local density approximation as a
correction to equation (2) (see e.g. [13]). Here, we take
εeff = 2 which is close to the value of the dielectric con-
stant in p-Si [14]. Such a value is also consistent with es-
timates obtained from reference [11].

In order to study the transport of charges along the
array we employ the Metropolis Monte Carlo (MC) algo-
rithm which requires the calculation of the total energy
of the system. The latter is evaluated according to the
following semi-classical Hamiltonian,

Etot({ne, nh}) =
N∑

i=1

[(
Ei

2
+

EBulk

2LNC
(LNC − 2xi)

)

ne(i)

+
(

Ei

2
+

EBulk

2LNC
(2xi − LNC)

)

nh(i)
]

+ EBulk[ne(0) + nh(N + 1)]

+
N∑

i=1

N∑

j=i

Vi,j −
N∑

i=1

Fxiqi

− eU [nh(N + 1) − ne(N + 1)], (3)

where the first two terms (those involving EBulk) account
for the energy of the particles occupying site i with re-
spect to the Fermi level (see lower panel in Fig. 1), the
third term represents the total Coulomb interaction, and
the last two terms the potential energy of carriers due to
the external field. The first two terms include the carrier
energy due to the bandgap of the cluster at xi and the
contribution of the contact potential due to the n- and
p-type semiconductors. We have assumed that the Fermi
energy εF is coincident with the top of the valence band
for the p-type semiconductor and coincident with the bot-
tom of the conduction band for the n-type semiconductor
(see bottom of Fig. 1). See Appendix B for more details.

In order to study the effects of the Coulomb interaction
using Eq. (3), we consider the following three different
models:
Model A: Full Coulomb interactions, with Vi,j �= 0 for
all i, j.
Model B: No Coulomb interactions, with Vi,j = 0 for
all i, j.
Model C: Only local Coulomb (self-)interactions, where
the local terms Vi,i > 0 for all i = j, and non-local ones
Vi,j = 0 for all i �= j.

In the next section we present results obtained from
the three models in their steady state regimes, which are
reached after about 105Ntot MC steps, and averages are
performed over 5 × 105Ntot MC steps.
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Fig. 2. Current density J versus applied electric field F . The
maximum value Jmax is obtained when the nh(0) = n holes
and the ne(N +1) = n electrons hop in the time τhop from the
p- and n-boxes to the array, respectively. In these calculations,
we have taken n = 8.

4 Results and discussions

4.1 Models A, B and C: General behavior

Results for the current density J as a function of the elec-
tric field F are shown in Figure 2 for models A, B and
C. In the limit F → ∞, all the free carriers nh(0) (in the
p-box) and ne(N + 1) (in the n-box), jump to the array
in a time τhop. Then, the maximum current density value
Jmax = enh(0)/

(
d2
0τhop

)
= 6.4 × 10−5 A/cm2 is reached.

From Figure 2 one can see that this asymptotic value is
attained in each model for quite different values of F .

The resulting values for the current density J with-
out interactions (model B) differ considerably from those
with interactions (models A and C), while differing much
less between those of models A and C. Regarding the ex-
perimentally accessible field intensities F < 800 kV/cm,
we find for instance for F = 100 kV/cm, J = 49.4 ×
10−6 A/cm2 (model B) and J = 0.92×10−6 A/cm2 (model
A), i.e. the ratio between them is larger than one order of
magnitude. Similarly, for F = 500 kV/cm we obtain J =
63.8× 10−6 A/cm2 (model B) and J = 5.7× 10−6 A/cm2

(model A). Thus, the Coulomb interaction reduces the
current by an order of magnitude with respect to the case
of no interaction. On the other hand, the ratio of cur-
rent densities J(F ) from model C to those from model A
is only of about 3 for fields ranging from 100 kV/cm to
800 kV/cm. This difference can be reduced by adjusting
the value of εeff in model C. This point will be discussed
in Section 4.4 below.

Another strong difference between the behavior of
models A and C on one side, and those of model B on the
other is the relation between J and the number n of holes
and electrons in the p- and n-boxes. For a given value of F ,
J is directly proportional to n for model B. In contrast,
for models A and C the current density J (and therefore
also the total emission power) is rather insensitive to n
(see top panel in Tab. 1).

This different behavior is mainly due to Coulomb self-
interactions (see Eq. (2)) that limit the net charge in each
nanocluster and thus the injection of carriers into the nan-
ocluster array. Let us consider, as an example, the jump
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Table 1. The values of the current density J and the mean
maximum occupation number of electrons, nemax, and holes,
nhmax, for models A, B and C in the case F = 300 kV/cm,
for four different values of n. For model B, the reported values
have been obtained using the iterative method described in
Section 4.3, whose error bars are much smaller than the ones
obtained from the MC simulations. The numerical values for
nemax and nhmax are equal within the statistical uncertainty.

J [10−5A/m]
n Model A Model B Model C
1 0.20 ± 0.01 0.80 0.40 ± 0.02
8 0.30 ± 0.01 6.37 0.76 ± 0.02
64 0.39 ± 0.01 50.98 1.04 ± 0.02
512 0.40 ± 0.01 407.83 1.36 ± 0.02

nhmax, nemax

n Model A Model B Model C
1 1.1 ± 0.2 1 2, 2 ± 0.2
8 1.2 ± 0.2 8 3.4 ± 0.2
64 1.4 ± 0.2 64 5.3 ± 0.2
512 2.2 ± 0.2 512 6.4 ± 0.2

of one hole from the p-box to the i = 1 NC. In this case
q1 changes from q1 → q1 + 1. We note that the Coulomb
self-interaction (see Eq. (2)) is present in the i = 1 quan-
tum dot but not in the p-box, which represents a bulk
silicon crystal. In addition, one has that q1 ≥ 0 because
there are (effectively) no electrons at site i = 1. Then, in
the calculation of E(after)−E(before) (see Eqs. (3) and (9))
the term

[
(q1 + 1)2 − q2

1

]
/εeffR1 arises, which is positive.

This term reduces the jump probability with respect to
the case of no interaction (model B). We have a similar
situation for the injection of electrons from the n-box to
the i = N quantum dot.

On the other hand, the combined effect of Coulomb
self-interactions and recombinations limit the occupation
number of electrons and holes in each nanocluster. For
F = 300 kV/cm, the mean maximum number of holes,
nhmax, and electrons, nemax, (with nhmax = nemax by sym-
metry) in the array are shown in Table 1 for the three
models. For model B one obtains nhmax = n, and the
occupation number can grow arbitrarily large leading to
unphysical results.

4.2 Model A for 100 kV/cm ≤ F ≤ 800 kV/cm

The behavior of J as a function of F is shown in Figure 3
for model A in the range 100 kV/cm ≤ F ≤ 800 kV/cm.
A non monotonous increase of J is observed for increas-
ing F . In particular, a small dip of J occurs around
F = 250 kV/cm.

The dip observed for J in Figure 3 around F =
250 kV/cm is due to Coulomb interactions. Indeed, we
have verified that such an ‘undulating’ behavior of the
current with the applied field disappears when Coulomb
interactions are switched off. In this respect, it is also in-
teresting to study the behavior of the occupation numbers
along the array for the external fields in question. The re-
sulting particle profiles corresponding to the above men-
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Fig. 3. Current density J versus applied electric field F for the
full interactions model A. The points 1, 2 and 3 correspond to
F = 200, 250, and 300 kV/cm, respectively. The actual error
bars associated to J are smaller than the size of the symbols
plotted in the figure.
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Fig. 4. The site occupation numbers nh(i) and ne(i) for model
A for three values of F obtained using MC simulations. The
curves 1, 2, and 3 correspond to F = 200, 250, and 300 kV/cm,
respectively (see also Fig. 3).

tioned three values of F are shown in Figure 4. Also here
a non linear behavior of the profiles as a function of F ap-
pears. Note that although the current density J changes
very little in going from point 1 to point 2 (see Fig. 3),
a strong change in the corresponding charge occupation
profiles occurs (see Fig. 4).

In the steady state, all the electrons and holes that
enter into the array get annihilated producing either pho-
tons or phonons, and J is proportional to the total re-
combination rate. As all recombinations effectively take
place (in the stationary state) near the center of the ar-
ray, we conclude that the shape of the occupation number
profiles near the center is crucial for the determination of
J . The detailed analysis of these features is beyond the
scope of the present work. However, when the Coulomb
interaction is suppressed (model B) J increases smoothly
with F . Furthermore, as we discuss in what follows, a sim-
ple procedure can be implemented in this case by per-
forming simplifying assumptions regarding the shape of
the profile around the array center.

4.3 Model B: Analytical iterative procedure

Let us consider next the simplest transport model, i.e. the
one in which Coulomb interactions are not present (model
B). Monte Carlo results for the occupation numbers of
electrons and holes are shown in Figure 5 for model B.
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Fig. 5. The site occupation numbers for F = 12 kV/cm. The
symbols correspond to results obtained from MC simulations
without interactions (model B) and the lines represent the re-
sults of the iterative method, equations (4) and (5).

We can clearly observe that the charge distributions are
well separated into two regions and that the number of
electrons and holes tend to vanish near the center of the ar-
ray, features common to the three models. Although small,
the charge densities at the center are not identically zero,
otherwise there would be no light emission from the ar-
ray. The point is that annihilation of e-h pairs actually
occurs on much shorter time scales than hopping, so that
on average, the occupation numbers remain quite small in
those sites where annihilation takes place. One can esti-
mate values of occupation numbers at the center of the
array in a simple way (see Appendix C).

For model B, the jump probabilities between nearest-
neighbor sites do not depend on the charge distribution in
the array. In this case it is possible to obtain the charge
distribution (and also the current) using a simple iterative
method.

In the analytical method we assume that holes are only
present from site i = 0 to site i = 200, reflecting their be-
havior in the stationary state. This also means that elec-
trons are only present in the right-half side of the array,
i.e. ne(i) = 0 for 0 ≤ i ≤ 200. Clearly, in this simple
approximation the two charge population do not overlap,
implying that on average no e-h pairs are present at the
center. This is not in contradiction with the fact that the
device can still emit light, since both populations vanish
(i.e. the charge carriers get annihilated) at the center of
the array. Light emission can then be calculated from the
resulting current in the array (see e.g. Appendix C).

From equations (3) and (9) one can compute the jump
probabilities pi,i+1 and pi+1,i, with 0 ≤ i ≤ 200. The
same applies to electrons on the second half of the array.
Then, the jump frequencies are given by Pi,i+1 = pi,i+1/τ0

and Pi+1,i = pi+1,i/τ0, respectively. Let now mi(t) be the
number of holes at site i at time t. The particle current in
going from site i to site i + 1 at time t is given by,

ji,i+1(t) = mi(t)Pi,i+1 − mi+1(t)Pi+1,i, (4)

and taking all these currents into account, one has that at
time t + ∆t,

mi(t + ∆t) = mi(t) + [ji−1,i(t) − ji,i+1(t)] ∆t, (5)

for 1 ≤ i ≤ 200. The method consists in iterating equa-
tions (4) and (5) until a stationary (time independent)
solution is reached. Here, we use the initial condition
mi(0) = 0 for 1 ≤ i ≤ 200, with the boundary con-
ditions m0(t) = 8 and m201(t) = 0 for all times t.
The degree of convergence can be controlled by calcu-
lating the difference between two consecutive profiles as,
ε2(t + ∆t) =

∑
i[mi(t + ∆t)−mi(t)]2/(200∆t)2. The iter-

ations are stopped at time ts when ε(ts) becomes smaller
than a predetermined threshold, ε0.

Upon convergence, the resulting values mi(ts) are con-
sidered as the average hole occupation numbers nh(i) in
the steady state. In the present case, the electron distri-
bution does not need to be calculated due to the assumed
symmetry of the array. In our calculations we have typ-
ically used ∆t = 2.5 × 10−3 s and ε0 = 10−15 s−1. The
electrical current is obtained as I = eji,i+1(ts), which is
independent of the index i.

In Figure 5 we report the calculated charge profiles
obtained with the iterative method. One can see that the
latter are in very good agreement with the results of Monte
Carlo simulations. The iterative method is much faster
than Monte Carlo simulations, specially for large values
of the electric field F , where the occupation numbers per
site can be very large making the MC simulations quite
time consuming due to the presence of a large number of
particles in the system.

Unfortunately, the iterative method cannot be ex-
tended to the case where the interactions Vi,j are present,
because the jump probabilities depend on the occupa-
tion numbers. Indeed, in equation (4) ji,i+1(t), mi(t), and
mi+1(t) are the mean values of particle current and oc-
cupation numbers. Thus, equation (4) corresponds to a
mean field approximation which is only valid when pi,i+1

and pi+1,i do not depend on the occupation numbers. Al-
though in the presence of self-interactions an analytical
model similar to the above one can not be implemented,
there exists a rather simple way of making the results of
model C to get closer to those of model A.

4.4 Model C: Effective dielectric constant

We note that the values of J for model C are larger than
those of model A (see Fig. 2). In order to reduce them one
can adjust the value of the dielectric constant, εeff , en-
tering the self-interaction terms in model C. For smaller
values of εeff , Vi,i increases (see Eq. (2)), and the occupa-
tion numbers decrease producing a diminution in J .

Monte Carlo results for J versus F , obtained from
model C with εeff = 0.8, are compared to those from model
A (εeff = 2) in Figure 6. The agreement is quite satisfac-
tory for all values of F , in particular in the low-field region
(see inset in Fig. 6) corresponding to the experimentally
accessible electric fields.

Let us consider finally the emission spectra of the array
in the two above cases. These are shown in Figure 7 for two
different values of F . One can see that the corresponding
spectra are quite similar and the associated total emission
powers, Pph, are indeed very close to each other.
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Fig. 7. Light emission spectrum of the NC array versus en-
ergy E for model A (squares) and model C with εeff = 0.8
(circle). These results were obtained for two different values
of F : F = 300 kV/cm (filled symbols), and F = 900 kV/cm
(empty symbols). The total emission in each case is found to
be: Pph = 6.73 × 10−18 W (filled squares), Pph = 5.88 × 10−18

W (filled circles), Pph = 2.68 × 10−17 W (empty squares) and
Pph = 2.63×10−17 W (empty circles). Although the total emis-
sions for the same value of F are similar, the spectra for model
C are shifted to the red with respect to those from model A.

Monte Carlo simulations for model A require, however,
a total computation time much larger than for model C.
This is due to the terms Vi,j with i �= j, correspond-
ing to long range interactions. A quantitative compari-
son between both models indicate that the effects of such
long-range interactions can be approximately taken into
account by using an appropriate dielectric constant. Nu-
merically, the advantage of using model C instead of the
full interactions model A, resides in the saving of com-
putational effort. This fact can become very useful in the
study of more complex nanocluster arrays, in particular
for higher-dimensional versions of the model as the one
shown in the top panel of Figure 1.

5 Conclusions

In conclusion, carrier-carrier interactions must be taken
into account in realistic simulations of charge transport
in silicon nanocluster arrays. Differently from the case of

bulk semiconductors, silicon nanoclusters are distinct ma-
terials due to both quantum-confinement effects and the
presence of non-vanishing Coulomb interactions among
charge carriers. Both features lead to a characteristic be-
havior of transport in such nanoscales. In particular, sili-
con nanoclusters, although displaying efficient light emis-
sion properties, have rather poor conducting behavior
when constituting optoelectric devices, since the presence
of intra-cluster Coulomb interactions alone (in addition to
passivation effects) limits the electron-hole recombination
currents yielding low emission powers. Nonetheless, the
present study sheds some light into the quantitative as-
pects of transport in silicon-based nanoarrays, indicating a
way of performing suitable approximations with the hope
of being able to design, and therefore simulate complex,
new useful structures. The main result of the work indi-
cates that Coulomb interactions do not need to be taken
fully into account, rather, a simpler interaction model with
intra-clusters (i.e. local) interactions is sufficient to achieve
semi-quantitative results.

Appendix A: The model of silicon nanoclusters

In intrinsic silicon nanoclusters the optical gap E between
electron and hole energies depends on NC size. Specifi-
cally, the relation between E (in eV) and the radius R of
a nanocluster is given by [6]

R(E) =
13 (eV)0.72

(E − EBulk)0.72
Å, (6)

where EBulk = 1.17 eV is the indirect optical gap of bulk
silicon. We assume that the electron-hole recombinations
take place when both the electron and the hole are present
inside the same nanocluster. The recombination can be ra-
diative (producing a photon) or non-radiative (producing
a phonon). For E in the range 1.2 eV < E < 2 eV, and at
a temperature T = 300 K, one can obtain from [10] the
following radiative recombination time

τrad(E) =
7.7 × 10−4 (eV)1.38

(E − Erad)1.38
s, (7)

where Erad = 1.137 eV. From [6] the non-radiative re-
combination time, τnrad(E) can be estimated (see e.g. [9])
as

τnrad(E) =
Y (R)

1 − Y (R)
τrad(E), (8)

where the photoluminescence yield Y (E) ≡ τnrad/(τrad +
τnrad), behaves as Y (E) = 4.4 exp(−2R/14 Å), for R ≥
18 Å. From equations (6)-(8) and for a given value of
gap E, one obtains the radius R of the nanocluster and
its radiative and non-radiative recombination times, τrad

and τnrad. For example, for E = 1.25 eV (R ≈ 80 Å),
τrad ≈ 1428 τnrad = 1.6 × 10−2 s, while for E = 1.8 eV
(R = 18 Å), both recombination times are of comparable
magnitude, τrad ≈ 2τnrad = 1.4 × 10−3 s, i.e. radiative re-
combinations are relatively more efficient at smaller radii
R than at large ones. This is the reason why the nanoclus-
ters of about 18 Å of radius are located at the center of
the array (see Fig. 1) where the emission of light occurs.
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Appendix B: Monte Carlo rules

To implement the MC simulations, we consider the
total number of electrons Ne =

∑N+1
i=0 ne(i), holes

Nh =
∑N+1

i=0 nh(i), and e-h pairs Np defined as Np =
∑N

i=1 np(i), where np(i) = min(ne(i), nh(i)) (for instance,
if ne(i) = 2 and nh(i) = 3, then np(i) = 2). Then, at each
MC step, we chose one of these Ntot = Ne + Nh + Np

elements at random.
If a particle (electron or hole) is selected, say at site

i, it can either hop to one of the two neighboring sites or
remain at i. A hop occurs with a probability

pi→j = phop exp(−β∆Etot), for ∆Etot > 0, and
pi→j = phop, otherwise, (9)

where phop = τ0/τhop, τ0 is the time unit, ∆Etot =
E

(after)
tot − E

(before)
tot the variation of the total energy of

the system for the attempted jump from site i to j, and
β = 1/KBT . Here we use T = 300 K. Hops from site
i = 0 can only occur to site i = 1, and from site N + 1
to site N . When a hopping process involves the left or
right box, the particle occupation inside the box is re-
stored to its predetermined value immediately after the
hop has occurred. For the case of equally doped p- and
n-material, the number of carriers in the boxes is taken
as nh(0) = ne(N + 1) = n. In the present calculations
we have taken n = 8, yielding a density of free carriers
ρ = n/d3

0 = 1 × 1018 cm−3 inside both doped materials.
In the case a pair is selected, a recombination event,

either radiative or non-radiative, takes place with proba-
bilities prad = τ0/τrad and pnrad = τ0/τnrad, respectively.
Here, we have used τ0 = 5× 10−5 s, and at each MC step
the time is increased by ∆t = τ0/Ntot.

In our practical calculations we do not simulate the
motion of carriers inside the doped materials, which are
assumed to be just the sources of charges entering the ar-
ray. Instead, we set a potential drop U across the NC
array of length LNC and introduce a number of holes,
δnh(0), and electrons, δne(N + 1), at sites 0 and N + 1
at each MC step, respectively, to keep the mean den-
sity of carriers inside the doped materials at their val-
ues, ρ. The current is then given by the mean number of
electrons and holes that enter the system per unit time,
I = e〈δnh(0) + δne(N + 1)〉/∆t, while the associated cur-
rent density, J , is estimated as J = I/d2

0. Finally, the total
emission power, Pph, is given by Pph =

∑N
i=1 Nph(i)Ei,

where Nph(i) is the mean number of radiative recombina-
tions per unit time at site i.

Appendix C: Occupation numbers
at the center of the array

We can estimate in a simple way the number of e-h pairs,
np, at the center of the array by assuming that all the
charges entering the system per unit of time get anni-
hilated at the central sites. Thus, the current I can be

estimated as I = enp/τrec, where the total recombination
time

1
τrec

=
1

τrad
+

1
τnrad

≈ 1
0.47 ms

, (10)

since τrad = 2τnrad = 1.4 ms for a NC of radius R = 18 Å
(see end of Appendix A). Since by definition, the current
density J = I/d2

0, we have

np = τrec
J

e
d2
0. (11)

Using the results from model A for F = 250 kV/cm,
where J = 2.067 × 10−6 A/cm2 (see Fig. 3), we get
np ≈ 0.024, which is a small number. If in equation (11)
we use the maximum possible current in the device, Jmax

(see Sect. 4.1), we obtain

np = nh(0)
τrec

τhop
, (12)

which depends on the ratio between the two characteris-
tic times in the problem. In the case nh(0) = 8 we find
np = 0.752. This number can be compared to the average
occupation number obtained in the case of large fields. For
instance, in the case F = 6000 kV/cm, the later is about
8 
 np.
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